УДК 620.09:33(07).

Особенности формирования электроэнергетического баланса Московского региона в 2000—2010 гг.

© 2012 г. О.А. Журавлев*

Особенности потребления электрической энергии населением агломерации

Прежде, чем приступить к анализу электрического баланса, хотелось бы определить особенности потребления электрической (и тепловой) энергии применительно к городской агломерации в общем и к Московской агломерации в частности. Показав эти особенности, мы можем перейти к постановке задачи анализа в зависимости от конкретной цели, которую ставит исследователь-экономист. В данной статье автор не рассматривает использование электрической и тепловой энергии промышленностью агломерации, а ограничивается оценкой только бытовых потребителей. Потребление электрической и тепловой энергии (мощности) в городской агломерации характеризуется рядом особенностей, а именно:

- мобильностью населения (трудовая маятниковая миграция, разнообразие «досуговых» перемещений):
 - концентрацией потребления;
- повышенными требованиями к надежности энергоснабжения.

Трудовая маятниковая миграция имеет несколько циклов: суточный, недельный, сезонный.

• Для всех агломераций свойственна ежедневная миграция жителей периферии к ядру, к местам приложения труда. Утренний приток людей в центр агломерации и вечерний отток из центра равны. Часть жителей центра агломерации образуют обратный по направлению поток, выезжая на работу к периферии агломерации (или за ее пределы). Как правило, второй поток существенно меньше первого, что связано со структурой расселения и местами приложения труда в агломерации. Подобные миграции в той или иной степени присущи всем городским агломерациям независимо от местоположения на Земном шаре [1].

- Недельный цикл: будни выходные. Часть работников находятся в агломерации в течение рабочей недели, покидая ее пределы на выходных. Это командированные работники, а также работники, имеющие работу в агломерации, удаленность постоянного жилья которых не позволяет им ездить домой ежедневно.
- Сезонный цикл: зима лето. В соответствии с таким циклом живут многие работники, выполняющие сезонные работы в агломерации. Например, характерны две волны мигрантов: одна «зимняя» (с сентября по май), а другая «летняя» (май сентябрь). Зимой наблюдается приток рабочей силы в центр агломерации, летом на периферию (в дачные и коттеджные поселки).

Высокая интенсивность энергопотребления – это следствие концентрации населения и фирм на географически ограниченной территории. Плотность расселения и размещения производств определяет удельную потребность в электрической и тепловой мощности на единицу площади агломерации.

Особенностями Московской городской агломерации в части спроса на энергию являются:

- цикличность обитания;
- наличие более одного жилища;
- высокая концентрация тепловой нагрузки.

На наш взгляд, существенное влияние на потребление электроэнергии (и, отчасти, тепловой энергии) в агломерации оказывает цикличность обитания населения. Опираясь на критерий цикличности, можно выделить а) владельцев дач, б) владельцев коттеджей. Первые предпочитают в летний период выезжать за город (на выходные дни, а часть домохозяйств - и на все лето). Владельцы коттеджей менее привязаны к сезону. Загородный дом для них - скорее, постоянное жилье. А городская квартира может использоваться для проживания в течение рабочей недели одним или двумя членами домохозяйства. Различие между этими двумя потребительскими классами наблюдается также в том, что большинство коттеджей расположено именно в пределах транспортной доступности к ядру агломерации, а дачи - за ее пределами. Иначе говоря, владельцы индивидуального жилья «более мобильны», чем дачники.

^{*} Аспирант факультета государственного и муниципального управления Государственного университета «Высшая школа экономики».

Таблица											
Некоторые показатели 10 регионов-лидеров по объему потребления электроэнергии в 2010 г.											
(рассчитано по данным Росстата)											
Субъект Федерации	Годовое потребление элек-	В том числе насе-	Доля населения в потребле-	Валовой региональный							
	троэнергии, млн кВт∙ч	лением, млн кВт⋅ч	нии электроэнергии, %	продукт, млн руб.							
Тюменская область	90 548	4 802	5,3	3 292 883							
Иркутская область	54 326	4 681	8,6	539 246							
Красноярский край	53 268	3 227	6,1	1 050 159							
Москва	51 954	9 934	19,1	8 401 859							
Свердловская область	50 737	4 720	9,3	1 033 748							
Московская область	47 100	8 177	17,4	1 796 536							
Челябинская область	35 130	2 986	8,5	645 932							
Кемеровская область	33 972	3 086	9,1	622 513							
Республика Татарстан	25 595	2 754	10,8	1 004 690							
Республика Башкортостан	24 105	2 979	12,4	757 570							

Таблица 2 Строительство жилых домов в Москве и Московской области в 2000–2011 гг., общей площади в год, тыс. м ² [3]												
Годы	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Москва	3342	3691	4274	4443	4579	4649	4780	4825	3264	2704	1771	1805
Московская область	2611	2828	3415	4115	5720	5296	6484	7805	7881	8452	7733	8219

Московский регион обладает самой низкой энергоемкостью валового регионального продукта (табл. 1) – за счет того, что основная ценность создается неэнергоемкими производствами (финансовый сектор, IT, услуги, структуры государственного управления).

В 2010 г. домохозяйства (Москва + область) потребили 18 % от общего объема отпущенной электроэнергии – почти на 64 % выше среднероссийского показателя, составляющего 11 %.

Доля населения в балансе электропотребления Московской области по данным за 2010 г. (17,3 %) лишь немногим меньше, чем Москвы (19,1 %), при том, что уровень урбанизации Московской области (доля городского населения, без учета дач и огородов) меньше московского – около 80 %. В 2002 г. москвичи потребляли до четверти всей отпущенной электроэнергии (23,9 %) (рис. 1).

За 10 лет произошло «выравнивание» доли населения в электробалансе двух субъектов, обра-

зующих агломерацию. Данные цифры говорят о том, что в Москве и Московской области имеют место процессы, которые воздействуют на энергоемкость сектора домохозяйств в разных направлениях.

1. С одной стороны, за счет сезонной (рекреационной) миграции происходит перемещение спроса на энергию за пределы Москвы. Исследования показывают, что ежегодно происходит циклическое «расширение» границ агломерации в период с мая по сентябрь включительно. В летнее время население периферии Московской агломерации и дальнего Подмосковья увеличивается на 4 млн человек [2]. В этот период многие москвичи живут на дачах. Соответственно, энергопотребление домохозяйств Московской агломерации географически расширяется летом и возвращается к центру в зимний период. Это можно проследить, сравнивая месячные графики электропотребления населения в Москве и Московской области (см. рис. 2).

2. С другой стороны, энергопотребление обла-

сти растет за счет застройки Подмосковья. Московская область занимает лидирующее место по объемам жилищного строительства. Об этом свидетельствуют объемы ввода жилых площадей в Московской области (превышающие московские сейчас уже более чем в 4-5 раз). Большая часть (80 %) данной застройки приходится на 30-километровую зону вокруг Москвы в границах ежедневной доступности для поездок на работу в столицу. За 2001-2010 гг. на 1 % прироста потребления электроэнергии в Москве приходилось

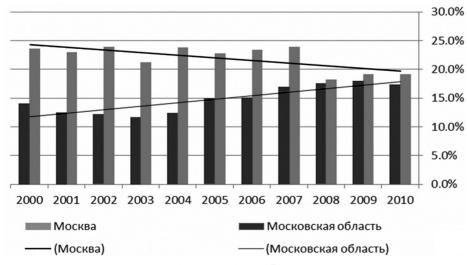
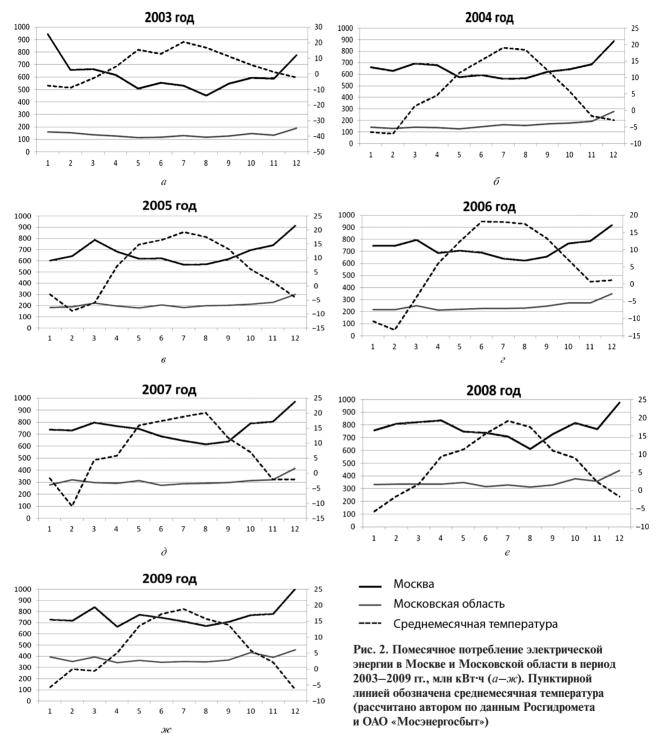



Рис. 1. Доля населения в электробалансе субъекта Федерации. Прямая линия — линейная аппроксимация (рассчитано автором по данным Росстата)

3,5 % прироста потребления в Московской области. Заметный вклад в динамику спроса вносит индивидуально-жилищное строительство на периферии агломерации, так как отдельным зданиям свойственно повышенное удельное потребление электроэнергии.

Согласно данным статистики, среднегодовой рост электропотребления населения с 2000 по 2010 г. составил 1,1 % по Москве и 6,8 % по Московской области. В 2010 г. среднедушевое

потребление электрической энергии домохозяйствами Московской области по отношению к 2000 г. выросло на 88 %, а по Москве – на 8,9 % (десятикратная разница в темпах роста). То есть за указанный период среднедушевое потребление электроэнергии в Москве практически не изменилось, при этом доля населения в электробалансе снизилась (с 24 % до 19 %). В течение того же периода жители Подмосковья стали потреблять в два раза больше электроэнергии на человека и доля населения

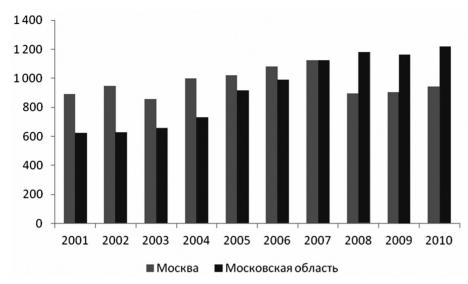


Рис. 3. Динамика среднедушевого потребления электроэнергии в Москве и Московской области в 2000—2010 гг., кВт-ч/душу населения

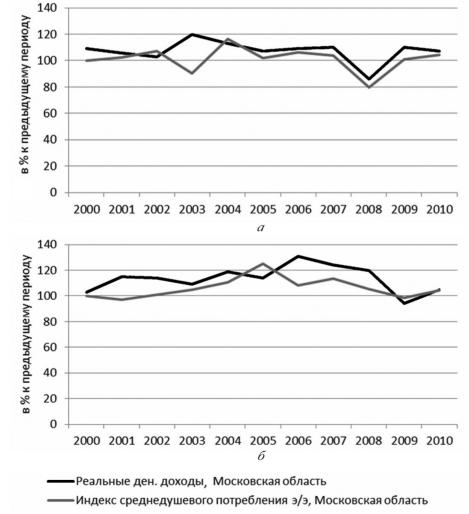


Рис. 4. Темпы роста реальных денежных доходов населения и индекса среднедушевого потребления электроэнергии в Москве (a) и Московской области (δ) (по данным Росстата)

в электробалансе выросла на треть.

В 2010 г. среднедушевое потребление в Московской области составило 1210 кВт·ч/чел. против 940 кВт·ч/чел. в Москве (рис. 3). Мы наблюдаем схожую картину во второй крупнейшей агломерации РФ. Удельное потребление электричества на душу населения в Ленинградской области выше, чем в Санкт-Петербурге на 10–15 % при существенной доле в ней сельского населения (около 30 %).

В течение рассматриваемого периода (2000-2010 гг.) динамика среднедушевого электропотребления находилась в тесной связи с динамикой реального денежного дохода, то есть можно констатировать высокую эластичность спроса на электроэнергию по доходу (см. рис. 1, 3). Следовательно, в географическом аспекте зона спроса будет находиться там, где быстрее растет доход. В среднесрочной перспективе Московская область по темпу роста доходов будет опережать Москву.

Таким образом:

- 1. В долгосрочном периоде градиент спроса на электрическую и тепловую энергию направлен от ядра Московской агломерации к периферии. Об этом свидетельствуют:
- Более высокие за последние 10 лет (в среднем на треть) темпы прироста потребления электрической и тепловой энергии в Московской области, чем в Москве.
- Сближение Московской области и Москвы по доле населения в электробалансе.
- Географическое расширение многоэтажной застройки. Весь сектор вокруг Москвы с севера (через восток, по часовой стрелке) на юг – от Ленинградского шоссе до Варшавского – представ-

ляет собой продолжение спальных районов Москвы. Очень высоки темпы застройки Московской области (в сравнении с Москвой), а именно ближайшего пояса агломерации. Эта тенденция сохранится в ближайшей перспективе – за счет расширения границ Москвы на запад.

• Динамика доходов населения Московской области, обусловливающая рост спроса на энергию.

По достижении определенного уровня благосостояния населения спрос на электрическую (и, возможно, тепловую) мощность «перетекает» за пределы ядра агломерации. Около 40 % домохозяйств Москвы и ближайшего Подмосковья – первого кольца агломерации – живут на «два дома». По данным исследователей [2], летом население Подмосковья вырастает на 4 млн человек. С ростом благосостояния люди приобретают коттеджи/индивидуальные дома. Квартиру в Москве используют в течение недели, а выходные проводят за городом.

Индивидуальная застройка требует гораздо большей электрической мощности на единицу площади. Удельное потребление электрической и тепловой энергии индивидуального коттеджа в 2–3 раза больше, чем жилья в многоквартирном доме.

2. Рыночные условия требуют оптимизации расхода электроэнергии и минимизации потерь тепла в жилище.

Повсеместное внедрение энергосберегающих осветительных приборов, регулируемое потребление тепла, а также максимально возможное исключение тепловых потерь (повышение теплоизоляции

зданий, утепление подъездов и лестничных площадок, устранение утечек горячей воды и др.) представляет собой резерв экономии электрической и тепловой энергии.

Планы развития энергетической инфраструктуры Москвы и Московской области не могут разрабатываться независимо. При этом для оптимизации потребления электрической и тепловой энергии необходимо, помимо ведения учета на уровне субъекта Федерации, составлять энергобалансы муниципалитетов.

Миграция населения и наличие более чем одного жилища на семью существенно влияют на потребление тепловой и электрической энергии. Задача дальнейших исследований – провести эконометрическую оценку данных факторов.

Библиографический список

- 1. *Лаппо Г.М.* География городов. М.: ВЛАДОС, 1997. 478 с.
- 2. Махрова А.Г., Нефедова Т.Г., Трейвиш А.И. Московская область сегодня и завтра: тенденции и перспективы пространственного развития. Московский гос. ун-т им. М.В. Ломоносова, Ин-т географии Российской Акад. наук. М.: Новый хронограф, 2008. 343 с.
- 3. Poccтат http://www.gks.ru/bgd/regl/b10_46/ IssWWW.exe/Stg/05-12.htm [дата обращения: 24.10.2012]./Бюллетень «Социально-экономическое положение России» (электронная версия).