创新扩散的经济物理模型:伊辛模型
https://doi.org/10.17073/2072-1633-2024-3-1303
摘要
在进行投资可行性研究、分析和评估创新效率时,需要一种工具来描述和模拟技术在工业中的扩散过程。本文介绍了一种使用物理方法的创新扩散模型,该模型描述了市场饱和点,即创新扩散速度的指数增长被对数增长所取代的点。研究对象是创新的扩散,主题是市场饱和点功能的开发。论证并介绍了伊辛物理模型对创新市场饱和过程进行建模方法的应用。伊辛模型的值由铁磁体中的居里点表示,表征了二级相变。本文提出了一个物理参数与经济参数对应关系的数学模型:企业间影响的大小、实施的障碍和创新突破。文中讨论了该模型的局限性和适用性,以及经济物理模型的进一步研究方向。所有经济部门都可以使用所开发的工具,以提高其创新活动水平。
关于作者
O. V. 日丹涅夫俄罗斯联邦
119571,俄罗斯联邦 莫斯科维尔纳德斯基大道82号1栋
628012,俄罗斯联邦汉特-曼西斯克市契诃夫大街16号
I. R. 奥夫相尼科夫
俄罗斯联邦
121099,俄罗斯联邦莫斯科诺文斯基林荫路13/4号
141701,俄罗斯联邦多尔戈普鲁德内市学院路9号
参考
1. World Intellectual property Organization. Global Innovation Index. Available at: https://www.wipo.int/global_innovation_index/en/2023/ (accessed on 27.08.2024).
2. Costello D.M. A cross-country, cross-industry comparison of productivity growth. The Journal of Political Economy. 1993;101(2):207–222. https://doi.org/10.1086/261873
3. Solow R.M. Technical change and the aggregate production function. The Review of Economics and Statistics. 1957;39(3):312–320. https://doi.org/10.2307/1926047
4. Harberger A.C. A vision of the growth process. The American Economic Review. 1998;88(1):1–32. Available at: http://www.econ.ucla.edu/harberger/vision.pdf
5. Chirwa T., Odhiambo N. Exogenous and endogenous growth models: a critical review. Comparative Economic Research. Central and Eastern Europe. 2018;21(4):63–84. https://doi.org/10.2478/cer2018-0027
6. Hagerstrand T. Innovation diffusion as a spatial process. Chicago: University of Chicago Press; 1967. 334 p.
7. Земцов С.П., Бабурин В.Л. Моделирование диффузии инноваций и типология регионов России на примере сотовой связи. Известия Российской Академии наук. Серия географическая. 2017;(4):17–30. https://doi.org/10.7868/S0373244417100024
8. Rogers E.M. Diffusion of innovations. NY: The Free Press; 1983. 447 p.
9. Bass F.M. A new product growth for model consumer durables. Management Science. 1969;15(5):215–227. https://doi.org/10.1287/mnsc.15.5.215
10. Fisher J.C., Pry R.H. A simple substitution model of technological change. Technological Forecasting and Social Change. 1971–1972;3:75–88. https://doi.org/10.1016/S0040-1625(71)80005-7
11. Norton J.A., Bass F.M. A diffusion theory model of adoption and substitution for successive generations of high-technology products. Management Science. 1987;33(9):1069–1086. https://doi.org/10.1287/MNSC.33.9.1069
12. Kumar N. Review of innovation diffusion models; 2015. No 1/2015-01. 54 p. https://doi.org/10.13140/RG.2.1.2413.0728
13. Садовничий В.А., Акаев А.А., Ильин И.В., Коротаев А.В., Малков С.Ю. Моделирование и прогнозирование глобальной динамики в XXI веке. Вестник Московского университета. Серия 27: Глобалистика и геополитика. 2022;(1):5–35. https://doi.org/10.56429/2414-4894-2022-39-1-5-35
14. Griliches Z. Research costs and social returns: hybrid corn and related innovations. Journal of Political Economy. 1958;66(5):419. https://doi.org/10.1086/258077
15. Mansfield E. Technical change and the rate of imitation. Econometrica. 1961;29(4):741–766. https://doi.org/10.2307/1911817
16. Dixon R. Hybrid corn revisited. Econometrica. 1980;48(6):1451–1461. https://doi.org/10.2307/1912817
17. Dinar A., Marom D. Rate and patterns of computer adoption and use in agricultural extensions. Technological Forecasting and Social Change. 1991;39(3):309–318. https://doi.org/10.1016/0040-1625(91)90043-f
18. Soete L. International diffusion of technology, industrial development and technological leapfrogging. World Development. 1985;13(3):409–422. https://doi.org/10.1016/0305-750X(85)90138-X
19. Kelley M.R. External learning opportunities and the diffusion of process innovations to small firms. The case of programmable automation. Technological Forecasting and Social Change. 1991;39(1-2):103–125.
20. Franck B., Gaussens O. L’automatisation des petites et moyennes entreprises: une étude économetrique. Économie & Prévision. 1992;(102-103):37–54. Available at: https://www.persee.fr/doc/ecop_0249-4744_1992_num_102_1_5274
21. O’Farrell P.N., Oakey R.P. Regional variations in the adoption of CNC machine tools by small engineering firms: a multivariate analysis. Environment and Planning A. 1992;24(6):887–902.
22. Karshenas M., Stoneman P. Rank, stock, order and epidemic effects in the diffusion of new process technologies: An empirical model. RAND Journal of Economics. 1993;24(4):503–528.
23. Lancaster T. Econometric methods for the duration of unemployment. Econometrica. 1979;47(4):939–956. https://doi.org/10.2307/1914140
24. Shimogawa S., Shinno M., Saito H. Structure of S-shaped growth in innovation diffusion. Physical Review E. 2012;85(5):056121. https://doi.org/10.1103/PhysRevE.85.056121
25. Battisti G., Hollenstein H., Stoneman P., Woerter M. Inter and intra firm diffusion of ICT in the United Kingdom (UK) and Switzerland (CH): An internationally comparative study based on firm-level data. Economics of Innovation and New Technology. 2007;16:669–687.
26. David P. Zvi Griliches and the economics of technology diffusion: Adoption of innovations, investment lags, and productivity growth – “Connecting the Dots”. Discussion paper 09-016; 2010. 76 p. Available at: https://www.researchgate.net/publication/254450764_Zvi_Griliches_and_the_Economics_of_Technology_Diffusion_Adoption_of_Innovations_Investment_ Lags_and_Productivity_Growth
27. Stoneman P., Toivanen O. Technological diffusion, uncertainty and irreversibility: The international diffusion of industrial robots; 2000. 32 p. Available at: www.researchgate.net/publication/228827358_Technological_Diffusion_Uncertainty_and_Irreversibility_The_International_Diffusion_of_Industrial_Robots
28. Laciana C.E., Rovere S.L. Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies. Physica A: Statistical Mechanics and its Applications. 2011;390(6):1139–1149. https://doi.org/10.1016/j.physa.2010.11.006
29. Stiglitz J.E. Learning to learn, localized learning and technological progress. In: Dasgupta P., Stoneman P. (eds.). Economic policy and technological change. Cambridge University Press; 1987. P. 125–153. https://doi.org/10.1017/CBO9780511559938.007
30. David P. Technical choice, innovation and economic growth. London: Cambridge University Press; 1975. 334 p.
31. Mansfield E. Industrial research and technological innovation. NY: Norton; 1968. 235 p.
32. Romeo A.A. The rate of imitation of a capital-embodied process innovation. Economica. 1977;44(173):63–69. https://doi.org/10.2307/2553550
33. Lyinn L. New data on the diffusion of the basic oxygen furnces in the U.S. and Japan. Journal of Industrial Economics. 1981;30(2):123–135.
34. Arcangeli F., Dosi G., Moggi M. Patterns of diffusion of electronic technologies: An international comparison with special reference to the Italian case. Research Policy. 1991;20(6):515–529.
35. Mansfield E. The diffusion of industrial robots in Japan and the United States. Research Policy. 1989;18(4):183–192.
36. Ovsyannikov I.R., Zhdaneev O.V. Forecast of innovative activity in key areas of energy transition technologies based on analysis of patent activity. International Journal of Hydrogen Energy. 2024;87:1261–1276. https://doi.org/10.1016/j.ijhydene.2024.08.375
37. Rosegger G. Diffusion through interfirm cooperation. A case study. Technological Forecasting and Social Change. 1991;39(1-2):81–103.
38. Жданеев О.В., Овсянников И.Р. Влияние внешних факторов на инновационную активность компаний ТЭК. Проблемы прогнозирования. 2024;(2(203)):73–82. https://doi.org/10.47711/0868-6351-203-73-82
39. Zhdaneev O.V., Frolov K.N. Technological and institutional priorities of the oil and gas complex of the Russian Federation in the term of the world energy transition. International Journal of Hydrogen Energy. 2024;58:1418–1428. https://doi.org/10.1016/j.ijhydene.2024.01.285
评论
供引用:
日丹涅夫 O.V., 奥夫相尼科夫 I.R. 创新扩散的经济物理模型:伊辛模型. 工业经济. 2024;17(3):261-270. (In Russ.) https://doi.org/10.17073/2072-1633-2024-3-1303
For citation:
Zhdaneev O.V., Ovsyannikov I.R. The economophysical model of the propagation of innovation: the Ising model. Russian Journal of Industrial Economics. 2024;17(3):261-270. (In Russ.) https://doi.org/10.17073/2072-1633-2024-3-1303