Preview

Russian Journal of Industrial Economics

Advanced search

Cognitive modelling of economic development of industrial ecosystems

https://doi.org/10.17073/2072-1633-2025-1-1383

Abstract

In the present conditions of economic development characterized by extreme uncertainty, the tasks of reindustrialization and import substitution require new approaches to analysis and decision-making. The article studies application of cognitive approach to modelling conditions and factors of efficient reindustrialization and import substitution of industrial ecosystems. On the basis of the cognitive map the authors analyze and visualize the relationships of the factors of reindustrialization and industrial policy. Cognitive maps are an effective tool for modelling complex socio-economic systems; they make it possible to identify the key relationships between the factors that influence their development. The authors define three scenarios of development of industrial ecosystems (innovation-and-breakthrough, modernization and inertia) and their conditions which vary by the degree of realization of six groups of factors (political, social, economic, innovative, industrial, managerial). The article highlights the importance of using tools of cognitive analysis for justifying strategic decisions and building an effective industrial policy to ensure reindustrialization and import advance in industrial ecosystems and increase sustainability and competitiveness of the national economics.

About the Authors

E. S. Mityakov
MIREA – Russian Technological University
Russian Federation

Evgeny S. Mityakov – Dr.Sci. (Econ.), Professor, Professor of the Department of Subject-Oriented Information Systems

78 Vernadskogo Ave., Moscow 119454



N. N. Karpukhina
MIREA – Russian Technological University
Russian Federation

Natalia N. Karpukhina – Dr.Sci. (Econ.), Associate Professor, Head of the Department of Innovation Management, Institute of Management Technologies

78 Vernadskogo Ave., Moscow 119454



S. N. Mityakov
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Sergey N. Mityakov – Dr.Sci. (Phys.-Math.), Professor, Director of the Institute of Economics and Management

24 Minina Str., Nizhny Novgorod 603155



A. I. Ladynin
MIREA – Russian Technological University
Russian Federation

Andrey I. Ladynin – PhD (Eng.), Associate Professor, Associate Professor of the Department of Informatics, Institute of Cyber Security and Digital Technologies

78 Vernadskogo Ave., Moscow 119454



References

1. Noskov V.A., Ilyina A.S. World experience of import substitution and reindustrialization and Russia’s economic security policy. Vestnik of Samara State University of Economics. 2021;(3(197)):17–27. (In Russ.). https://doi.org/10.46554/1993-0453-2021-3-197-17-27

2. Khairov B.G., Novikov D.T., Prokof’yeva T.A., Protsenko I.O., Khairova S.M. Reflexive Governance of import substitution mechanism in clusters. European Research Studies Journal. 2017;20(3A):470–483. https://doi.org/10.35808/ersj/722

3. Solovyev A.I. Import substitution in Russia: Problems and solutions. Economy. Taxes. Law. 2016;9(4):66–71. (In Russ.)

4. Volodina N.L. Advantages of creating a digital ecosystem. Organizator proizvodstva = Organizer of Production. 2021;29(4):104–111. (In Russ.). https:// doi.org/10.36622/VSTU.2021.95.61.011

5. Popov E.V., Simonova V.L., Chelak I.P. Assessment of the innovative ecosystems development. Russian Journal of Innovation Economics. 2020;10(4):2359–2374. (In Russ.). https://doi.org/10.18334/vinec.10.4.111098

6. Baldassarre B., Schepers M., Bocken N., Cuppen E., Korevaar G., Calabretta G. Industrial symbiosis: towards a design process for eco-industrial clusters by integrating circular economy and industrial ecology perspectives. Journal of Cleaner Production. 2019;216(3):446–460. https://doi.org/10.1016/j.jclepro.2019.01.091

7. Soldak M.O. Industrial ecosystems and technological development. Economy of Industry. 2019;(4(88)):75–91. https://doi.org/10.15407/econindustry2019.04.075

8. Walls J.L., Paquin R.L. Organizational perspectives of industrial symbiosis: A review and synthesis. Organization & Environment. 2015;28(1):32–53. https://doi.org/10.1177/1086026615575333

9. Kleiner G.B. Industrial ecosystems: foresight. Ekonomicheskoe vozrozhdenie Rossii = The Economic Revival of Russia. 2018;(2(56)):53–62. (In Russ.)

10. Buzmakova M.V. Reindustrialization: The trend of the world economy. Vestnik of Lobachevsky State University of Nizhni Novgorod. Series: Social Sciences. 2017;(1(45)):7–17. (In Russ.)

11. Mityakov E., Mityakov S., Kulikova N., Yudin A., Ladynin A. Choosing a model for effective management of industrial ecosystems in Russia: a numerical experiment. Relacoes Internacionais no Mundo Atual / Brazilian Journal of Law and International Relations. 2024;1(43):495–515. URL: https:// revista.unicuritiba.edu.br/index.php/RIMA/article/view/6439/371374931

12. Ginis L.A. Origins of modern cognitive modeling. Taganrog State Radiotechnical University n.a. V.D. Kalmykov Bulletin. 2005;6(50):119–128. (In Russ.)

13. Faiman A.D. Resource projects in the economy of the Jewish autonomous region: evaluation of effects based on approaches of cognitive modeling. Vestnik Zabaikalskogo gosudarstvennogo universiteta = The Transbaikal State University Journal. 2021;27(9):107–120. (In Russ.). https://doi.org/10.21209/2227-9245-2021-27-9-107-120

14. Merenkova I.N., Novikova I.I., Gavrilova Z.V. Cognitive modeling of the diversified rural economy development in the context of digitalization. Russian Economic Bulletin. 2022;5(3):82–87. (In Russ.)

15. Serikov V.V. Choice of a model for assessing and forecasting the activities of enterprises in the industrial sector of the economy in conditions of import substitution. State and Municipal Management. Scholar Notes. 2023;(2):167–174. (In Russ.). https:// doi.org/10.22394/2079-1690-2023-1-2-167-174

16. Babikova A.V., Babikov N.M. Assessment of digital transformation in the banking sector based on cognitive modeling. Russian Journal of Innovation Economics. 2021;11(1):299–314. (In Russ.). https:// doi.org/10.18334/vinec.11.1.111618

17. Morita J., Miwa K., Maehigashi A., Terai H., Kojima K., Ritter, F. Cognitive modeling of automation adaptation in a time critical task. Frontiers in Psychology. 2020;11:1971–1976. https://doi.org/10.3389/fpsyg.2020.02149

18. Kwiliński A., Kuzior A. Cognitive technologies in the management and formation of directions of the priority development of industrial enterprises. Management Systems in Production Engineering. 2020;28(2):133–138. https://doi.org/10.2478/mspe-2020-0020

19. Schürmann T., Beckerle P. Personalizing human-agent interaction through cognitive models. Frontiers in Psychology. 2020;11:561510. https://doi.org/10.3389/fpsyg.2020.561510

20. Eden C. On the nature of cognitive maps. Journal of Management Studies. 1992;29(3):261–265. https:// doi.org/10.1111/J.1467-6486.1992.TB00664.X

21. Kang B., Deng Y., Sadiq R., Mahadevan S. Evidential cognitive maps. Knowledge-Based Systems. 2012;35:77–86. https://doi.org/10.1016/j.knosys.2012.04.007

22. Zagranovskaia A.V. Automated search for concepts of cognitive map in the field of strategic management. Vestnik of the Plekhanov Russian University of Economics. 2022;(4):165–176. (In Russ.). https://doi.org/10.21686/2413-2829-2022-4-165-176

23. Papageorgiou E., Salmeron J. A review of fuzzy cognitive maps research during the last decade. IEEE Transactions on Fuzzy Systems. 2013;21(1):66–79. https://doi.org/10.1109/TFUZZ.2012.2201727

24. Hilbert M., Miles I., Othmer J. Foresight tools for participative policy-making in inter-governmental processes in developing countries: Lessons learned from the eLAC Policy Priorities Delphi. Technological Forecasting and Social Change. 2009;76(7):880–896. https://doi.org/10.1016/j.techfore.2009.01.001

25. Zagranovskaya A.V., Eissner Yu.N. Simulation scenarios of the economic situation based on fuzzy cognitive maps. Modern Economics: Problems and Solutions. 2017;(10):33–47. (In Russ.). URL: https:// journals.vsu.ru/meps/article/view/6322/6385

26. Memon M., Ting H., Hwa C., Ramayah T., Chuah F., Cham T.H. Sample size for survey research: Review and recommendations. Journal of Applied Structural Equation Modeling. 2020;4(2):1–20. https://doi.org/10.47263/JASEM.4(2)01

27. Колбасов В.И. Сценарное планирование как эффективный метод разработки стратегии. Креативная экономика. 2012;6(8):86–92. Kolbasov V.I. Scenary planning as efficient method of strategy development. Creative Economy. 2012;6(8):86–92. (In Russ.)

28. Трегуб И.В. Математические модели динамики экономических систем. Москва: Русайнс; 2020. 162 с.


Supplementary files

Review

For citations:


Mityakov E.S., Karpukhina N.N., Mityakov S.N., Ladynin A.I. Cognitive modelling of economic development of industrial ecosystems. Russian Journal of Industrial Economics. 2025;18(1):63-77. (In Russ.) https://doi.org/10.17073/2072-1633-2025-1-1383

Views: 295


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-1633 (Print)
ISSN 2413-662X (Online)