Повышение достоверности экономического прогноза за счет проверки нормальности распределения массива данных
https://doi.org/10.17073/2072-1633-2025-2-1393
Аннотация
Одной из ошибок прогнозирования тенденций экономического развития является отсутствие первоначальной проверки нормальности распределения данных как неотъемлемое условие применимости статистических процедур. Применимость данных методов к искаженным данным приводит к неточности и снижению качества экономического прогноза. Цель работы – провести поэтапную проверку нормальности распределения данных для обеспечения более высокой достоверности экономического прогноза на основе тестов симметрии, таких как коэффициент вариации, графики квантилей, среднее абсолютное отклонение, диапазон размаха варьирования и статистика Жарка–Бера. Обработка данных, основанная на распределении валового внутреннего продукта РФ с 2000 по 2020 г., показала наличие нормального распределения массива, что способствует достоверному экономическому прогнозу и оценки перспектив изменений в будущем с целью минимизации ошибок и искажению результатов.
Об авторах
Ю. Ю. КостюхинРоссия
Юрий Юрьевич Костюхин – д-р экон. наук, профессор
119049, Москва, Ленинский просп., д. 4, стр. 1
А. С. Богачев
Россия
Андрей Сергеевич Богачев – ассистент кафедры промышленного менеджмента
119049, Москва, Ленинский просп., д. 4, стр. 1
Список литературы
1. Litimein O., Laksaci A., Ait-Hennani L., Mechab B., Rachdi M. Asymptotic normality of the local linear estimator of the functional expectile regression. Journal of Multivariate Analysis. 2024;202(2):10528. https://doi.org/10.1016/j.jmva.2023.105281
2. Mohammedi M., Bouzebda S., Laksaci A.The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data. Journal of Multivariate Analysis. 2021;181:104673. https://doi.org/10.1016/j.jmva.2020.104673
3. Aneiros-Pérez G., Cao R., Ricardo F., Genest Ch., Vieu Ph. Recent advances in functional data analysis and high-dimensional statistics. Journal of Multivariate Analysis. 2019;170:3–9. https://doi.org/10.1016/j.jmva.2018.11.007
4. Bellini F., Bignozzi V., Puccetti G. Conditional expectiles, time consistency and mixture convexity properties. Insurance: Mathematics and Econo mics. 2018;82:117–123. https://doi.org/10.1016/j.insmatheco.2018.07.001
5. Костюхин Ю.Ю., Богачев А.С. Управление инвестиционной привлекательностью предприятия в период высокой волатильности рынка на основе прогнозирования ожиданий. Экономика промышленности. 2024;17(1):20–28. https://doi.org/10.17073/2072-1633-2024-1-1265
6. Kara-Zaitri L., Laksaci A., Rachdi M., Vieu Ph. Data-driven KNN estimation in nonparametric functional data analysis. Journal of Multivariate Analysis. 2017;153:176–188. https://doi.org/10.1016/j.jmva.2016.09.016
7. Litimein O., Laksaci A., Mechab B., Bouzebda S. Local linear estimate of the functional expectile regression. Statistics & Probability Letters. 2023;192(2):109682. https://doi.org/10.1016/j.spl.2022.109682
8. Ding H., Lu Zh., Zhang J., Zhang R. Semi-functio nal partial linear quantile regression. Statistics & Probability Letters. 2018;142(6):92–101. https://doi.org/10.1016/j.spl.2018.07.007
9. Pisică D., Dammers R., Boersma E., Volovici V. Tenets of good practice in regression analysis. A brief tutorial. World Neurosurgery. 2022;161:230–239.e6. https://doi.org/10.1016/j.wneu.2022.02.112
10. Yurii А.R. A complex approach to evaluating the innovation strategy of a company to determine its investment attractiveness. Procedia – Social and Behavioral Sciences. 2013;99:562–571. https://doi.org/10.1016/j.sbspro.2013.10.526
11. Shinno H., Yoshioka S., Marpaung S., Hachiga S. Qualitative SWOT analysis on the global competiveness of machine tool industry. Journal of Engineering Design. 2006;17(3):251–258.
12. Barberis N. Investing for the long run when returns are predictable. Journal of Finance. 2000;55(1):225–264.
13. Antunes F., Ribeiro B., Pereira F. Probabilistic mo deling and visualization for bankruptcy prediction. Applied Soft Computing. 2017;60:831–843. https://doi.org/10.1016/j.asoc.2017.06.043
14. Daemi A., Kodamana H., Huanga B. Gaussian process modelling with Gaussian mixture likelihood. Journal of Process Control. 2019;81(С):209–220. https://doi.org/10.1016/j.jprocont.2019.06.007
15. Dierkes M., Erner C., Zeisberger S. Investment horizon and the attractiveness of investment strategies: A behavioral approach. Journal of Banking & Finance. 2010:34(5):1032–1046. https://doi.org/10.1016/j.jbankfin.2009.11.003
16. Xiao J., Yu P., Song X., Zhang Z. Statistical inference in the partial functional linear expectile regression mo del. Science China Mathematic. 2022;65(12):2601–2630. https://doi.org/10.1007/s11425-020-1848-8
17. Chen C., Guo S., Qiao X. Functional linear regression: Dependence and error contamination. Journal of Business & Economic Statistics. 2022;40(1):444–457. https://doi.org/10.1080/07350015.2020.1832503
18. Rachdi M., Laksaci A., Al-Kandari N.M. Expectile regression for spatial functional data analysis (sFDA). Metrika. 2022;85(5):627–655. https://doi.org/10.1007/s00184-021-00846-x
19. Cui X, Lin H, Lian H. Partially functional linear regression in reproducing kernel Hilbert spaces. Computational Statistics & Data Analysis. 2020;150(6):106978. https://doi.org/10.1016/j.csda.2020.106978
20. Daouia A., Girard S., Stupfler G. Extremiles: A new perspective on asymmetric least squares. Journal of the American Statistical Association. 2019;114(527):1366–1381. https://doi.org/10.1080/01621459.2018.1498348
Рецензия
Для цитирования:
Костюхин Ю.Ю., Богачев А.С. Повышение достоверности экономического прогноза за счет проверки нормальности распределения массива данных. Экономика промышленности. 2025;18(2):275-281. https://doi.org/10.17073/2072-1633-2025-2-1393
For citation:
Kostyukhin Yu.Yu., Bogachev A.S. Increasing the reliability of the economic forecast by checking the normality of the data array distribution. Russian Journal of Industrial Economics. 2025;18(2):275-281. (In Russ.) https://doi.org/10.17073/2072-1633-2025-2-1393