Increasing the reliability of the economic forecast by checking the normality of the data array distribution
https://doi.org/10.17073/2072-1633-2025-2-1393
Abstract
One of the errors in forecasting economic development trends is lack of initial normality check of data distribution as an essential condition for the applicability of statistical procedures. The applicability of these methods to distorted data results in inaccuracy and low quality of the economic forecast. The purpose of the study is to carry out a step-to-step normality check of data distribution to ensure a more accurate economic forecast based on the symmetry tests such as the coefficient of variation, quantile graphs, average absolute deviation, range of variation, and Jarque–Bera statistic. Data processing based on distribution of Russia’s gross domestic product from 2000 to 2020 revealed a normal array distribution, which ensures reliable economic forecasting and assessment of prospects for future changes in order to minimize errors and distorted results.
About the Authors
Yu. Yu. KostyukhinRussian Federation
Yuriy Yu. Kostyukhin – Dr.Sci. (Econ.), Professor
4-1 Leninskiy Ave., Moscow 119049
A. S. Bogachev
Russian Federation
Andrey S. Bogachev – Assistant of the Department of Industrial Management
4-1 Leninskiy Ave., Moscow 119049
References
1. Litimein O., Laksaci A., Ait-Hennani L., Mechab B., Rachdi M. Asymptotic normality of the local linear estimator of the functional expectile regression. Journal of Multivariate Analysis. 2024;202(2):10528. https://doi.org/10.1016/j.jmva.2023.105281
2. Mohammedi M., Bouzebda S., Laksaci A.The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data. Journal of Multivariate Analysis. 2021;181:104673. https://doi.org/10.1016/j.jmva.2020.104673
3. Aneiros-Pérez G., Cao R., Ricardo F., Genest Ch., Vieu Ph. Recent advances in functional data analysis and high-dimensional statistics. Journal of Multivariate Analysis. 2019;170:3–9. https://doi.org/10.1016/j.jmva.2018.11.007
4. Bellini F., Bignozzi V., Puccetti G. Conditional expectiles, time consistency and mixture convexity properties. Insurance: Mathematics and Econo mics. 2018;82:117–123. https://doi.org/10.1016/j.insmatheco.2018.07.001
5. Kostyukhin Yu.Yu., Bogachev A.S. Managing investment attractiveness of a company during a period of high market volatility based on forecasting expectations. Russian Journal of Industrial Economics. 2024;17(1):20–28. (In Russ.). https://doi.org/10.17073/2072-1633-2024-1-1265
6. Kara-Zaitri L., Laksaci A., Rachdi M., Vieu Ph. Data-driven KNN estimation in nonparametric functional data analysis. Journal of Multivariate Analysis. 2017;153:176–188. https://doi.org/10.1016/j.jmva.2016.09.016
7. Litimein O., Laksaci A., Mechab B., Bouzebda S. Local linear estimate of the functional expectile regression. Statistics & Probability Letters. 2023;192(2):109682. https://doi.org/10.1016/j.spl.2022.109682
8. Ding H., Lu Zh., Zhang J., Zhang R. Semi-functio nal partial linear quantile regression. Statistics & Probability Letters. 2018;142(6):92–101. https://doi.org/10.1016/j.spl.2018.07.007
9. Pisică D., Dammers R., Boersma E., Volovici V. Tenets of good practice in regression analysis. A brief tutorial. World Neurosurgery. 2022;161:230–239.e6. https://doi.org/10.1016/j.wneu.2022.02.112
10. Yurii А.R. A complex approach to evaluating the innovation strategy of a company to determine its investment attractiveness. Procedia – Social and Behavioral Sciences. 2013;99:562–571. https://doi.org/10.1016/j.sbspro.2013.10.526
11. Shinno H., Yoshioka S., Marpaung S., Hachiga S. Qualitative SWOT analysis on the global competiveness of machine tool industry. Journal of Engineering Design. 2006;17(3):251–258.
12. Barberis N. Investing for the long run when returns are predictable. Journal of Finance. 2000;55(1):225–264.
13. Antunes F., Ribeiro B., Pereira F. Probabilistic mo deling and visualization for bankruptcy prediction. Applied Soft Computing. 2017;60:831–843. https://doi.org/10.1016/j.asoc.2017.06.043
14. Daemi A., Kodamana H., Huanga B. Gaussian process modelling with Gaussian mixture likelihood. Journal of Process Control. 2019;81(С):209–220. https://doi.org/10.1016/j.jprocont.2019.06.007
15. Dierkes M., Erner C., Zeisberger S. Investment horizon and the attractiveness of investment strategies: A behavioral approach. Journal of Banking & Finance. 2010:34(5):1032–1046. https://doi.org/10.1016/j.jbankfin.2009.11.003
16. Xiao J., Yu P., Song X., Zhang Z. Statistical inference in the partial functional linear expectile regression mo del. Science China Mathematic. 2022;65(12):2601–2630. https://doi.org/10.1007/s11425-020-1848-8
17. Chen C., Guo S., Qiao X. Functional linear regression: Dependence and error contamination. Journal of Business & Economic Statistics. 2022;40(1):444–457. https://doi.org/10.1080/07350015.2020.1832503
18. Rachdi M., Laksaci A., Al-Kandari N.M. Expectile regression for spatial functional data analysis (sFDA). Metrika. 2022;85(5):627–655. https://doi.org/10.1007/s00184-021-00846-x
19. Cui X, Lin H, Lian H. Partially functional linear regression in reproducing kernel Hilbert spaces. Computational Statistics & Data Analysis. 2020;150(6):106978. https://doi.org/10.1016/j.csda.2020.106978
20. Daouia A., Girard S., Stupfler G. Extremiles: A new perspective on asymmetric least squares. Journal of the American Statistical Association. 2019;114(527):1366–1381. https://doi.org/10.1080/01621459.2018.1498348
Review
For citations:
Kostyukhin Yu.Yu., Bogachev A.S. Increasing the reliability of the economic forecast by checking the normality of the data array distribution. Russian Journal of Industrial Economics. 2025;18(2):275-281. (In Russ.) https://doi.org/10.17073/2072-1633-2025-2-1393