Preview

工业经济

高级搜索

通过检查数据组分布的正态性来提高经济预测的可靠性

https://doi.org/10.17073/2072-1633-2025-2-1393

摘要

预测经济发展趋势的错误之一是缺乏对数据分布正态性的初步检验,而这是统计程序适 用性的必要条件。将这些方法应用于失真数据会导致经济预测不准确和质量下降。这项工作的 目的是逐步检验数据分布的正态性,以确保在变异系数、分位数图、平均绝对偏差、方差范围 和 Jarque-Bera 检验等对称性检验的基础上提高经济预测的可靠性。根据2000年至2020年俄 罗斯联邦国内生产总值分布数据处理表明,该数据组呈现出正态分布,有利于对未来经济变化 前景进行可靠的预测和评估,从而尽量减少错误和结果失真。

关于作者

Yu. Yu. 科斯秋欣
国立研究型技术大学 “MISIS”
俄罗斯联邦

119049,俄罗斯联邦莫斯科列宁斯基大街4号1栋



A. S. 博加乔夫
国立研究型技术大学 “MISIS”
俄罗斯联邦

119049,俄罗斯联邦莫斯科列宁斯基大街4号1栋



参考

1. Litimein O., Laksaci A., Ait-Hennani L., Mechab B., Rachdi M. Asymptotic normality of the local linear estimator of the functional expectile regression. Journal of Multivariate Analysis. 2024;202(2):10528. https://doi.org/10.1016/j.jmva.2023.105281

2. Mohammedi M., Bouzebda S., Laksaci A.The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data. Journal of Multivariate Analysis. 2021;181:104673. https://doi.org/10.1016/j.jmva.2020.104673

3. Aneiros-Pérez G., Cao R., Ricardo F., Genest Ch., Vieu Ph. Recent advances in functional data analysis and high-dimensional statistics. Journal of Multivariate Analysis. 2019;170:3–9. https://doi.org/10.1016/j.jmva.2018.11.007

4. Bellini F., Bignozzi V., Puccetti G. Conditional expectiles, time consistency and mixture convexity properties. Insurance: Mathematics and Econo mics. 2018;82:117–123. https://doi.org/10.1016/j.insmatheco.2018.07.001

5. Костюхин Ю.Ю., Богачев А.С. Управление инвестиционной привлекательностью предприятия в период высокой волатильности рынка на основе прогнозирования ожиданий. Экономика промышленности. 2024;17(1):20–28. https://doi.org/10.17073/2072-1633-2024-1-1265

6. Kara-Zaitri L., Laksaci A., Rachdi M., Vieu Ph. Data-driven KNN estimation in nonparametric functional data analysis. Journal of Multivariate Analysis. 2017;153:176–188. https://doi.org/10.1016/j.jmva.2016.09.016

7. Litimein O., Laksaci A., Mechab B., Bouzebda S. Local linear estimate of the functional expectile regression. Statistics & Probability Letters. 2023;192(2):109682. https://doi.org/10.1016/j.spl.2022.109682

8. Ding H., Lu Zh., Zhang J., Zhang R. Semi-functio nal partial linear quantile regression. Statistics & Probability Letters. 2018;142(6):92–101. https://doi.org/10.1016/j.spl.2018.07.007

9. Pisică D., Dammers R., Boersma E., Volovici V. Tenets of good practice in regression analysis. A brief tutorial. World Neurosurgery. 2022;161:230–239.e6. https://doi.org/10.1016/j.wneu.2022.02.112

10. Yurii А.R. A complex approach to evaluating the innovation strategy of a company to determine its investment attractiveness. Procedia – Social and Behavioral Sciences. 2013;99:562–571. https://doi.org/10.1016/j.sbspro.2013.10.526

11. Shinno H., Yoshioka S., Marpaung S., Hachiga S. Qualitative SWOT analysis on the global competiveness of machine tool industry. Journal of Engineering Design. 2006;17(3):251–258.

12. Barberis N. Investing for the long run when returns are predictable. Journal of Finance. 2000;55(1):225–264.

13. Antunes F., Ribeiro B., Pereira F. Probabilistic mo deling and visualization for bankruptcy prediction. Applied Soft Computing. 2017;60:831–843. https://doi.org/10.1016/j.asoc.2017.06.043

14. Daemi A., Kodamana H., Huanga B. Gaussian process modelling with Gaussian mixture likelihood. Journal of Process Control. 2019;81(С):209–220. https://doi.org/10.1016/j.jprocont.2019.06.007

15. Dierkes M., Erner C., Zeisberger S. Investment horizon and the attractiveness of investment strategies: A behavioral approach. Journal of Banking & Finance. 2010:34(5):1032–1046. https://doi.org/10.1016/j.jbankfin.2009.11.003

16. Xiao J., Yu P., Song X., Zhang Z. Statistical inference in the partial functional linear expectile regression mo del. Science China Mathematic. 2022;65(12):2601–2630. https://doi.org/10.1007/s11425-020-1848-8

17. Chen C., Guo S., Qiao X. Functional linear regression: Dependence and error contamination. Journal of Business & Economic Statistics. 2022;40(1):444–457. https://doi.org/10.1080/07350015.2020.1832503

18. Rachdi M., Laksaci A., Al-Kandari N.M. Expectile regression for spatial functional data analysis (sFDA). Metrika. 2022;85(5):627–655. https://doi.org/10.1007/s00184-021-00846-x

19. Cui X, Lin H, Lian H. Partially functional linear regression in reproducing kernel Hilbert spaces. Computational Statistics & Data Analysis. 2020;150(6):106978. https://doi.org/10.1016/j.csda.2020.106978

20. Daouia A., Girard S., Stupfler G. Extremiles: A new perspective on asymmetric least squares. Journal of the American Statistical Association. 2019;114(527):1366–1381. https://doi.org/10.1080/01621459.2018.1498348


评论

供引用:


科斯秋欣 Yu.Yu., 博加乔夫 A.S. 通过检查数据组分布的正态性来提高经济预测的可靠性. 工业经济. 2025;18(2):275-281. (In Russ.) https://doi.org/10.17073/2072-1633-2025-2-1393

For citation:


Kostyukhin Yu.Yu., Bogachev A.S. Increasing the reliability of the economic forecast by checking the normality of the data array distribution. Russian Journal of Industrial Economics. 2025;18(2):275-281. (In Russ.) https://doi.org/10.17073/2072-1633-2025-2-1393

浏览: 38


ISSN 2072-1633 (Print)
ISSN 2413-662X (Online)