数字孪生是未来能源领域的关键要素:与康德拉季耶夫长波理论的联系
https://doi.org/10.17073/2072-1633-2025-3-1463
摘要
本文探讨了数字孪生技术作为能源行业数字化转型关键工具的作用。在经济学领域,N.D. 康德拉季耶夫的长波理论得到了广泛的认可。该理论认为,世界经济发展具有周期性,长期的繁荣和衰退周期(约50–60年)交替出现。本文系统分析了数字孪生技术在能源领域应用的科学文献和实践案例,并与长经济周期的各个阶段进行了比较。特别关注了数字孪生技术如何确保可再生能源的整合、提高能源系统的可靠性以及加速能源转型。本研究的创新之处在于,它不仅将数字孪生技术视为优化单个流程的手段,还将其视为以可持续发展为重点的新兴第六技术范式的基础创新之一。有理由认为,数字孪生技术作为数字化转型与 “绿色” 转型之间的纽带,正在形成一种新的能源范式。最后,本文得出结论,在即将到来的第六次康德拉季耶夫长波背景下,该技术具有巨大的潜力。
关于作者
S. E. 格沃兹佳尼俄罗斯联邦
119049,俄罗斯联邦莫斯科列宁斯基大街4号1栋;
607060,下诺夫哥罗德州维克萨巴塔舍夫兄弟大街45号.
A. V. 米亚斯科夫
俄罗斯联邦
119049,俄罗斯联邦莫斯科列宁斯基大街4号1栋
参考
1. Strielkowski W., Rausser G., Kuzmin E. Digital revo- lution in the energy sector: Effects of using digital twin technology. In: Kumar V., Leng J., Akberdina V., Kuzmin E. (eds.). Digital Transformation in Industry. Springer; 2022:43–55. https://doi.org/10.1007/978-3-030-94617-3_4
2. Fuller A., Fan Z., Day C., Barlow C. Digital Twin: Enabling technologies, challenges and open research. IEEE Access. 2020;8:108952–108971. https://doi.org/10.1109/ACCESS.2020.2998358
3. Jones D., Snider C., Nassehi A., Yon J., Hicks B. Characterising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology. 2020;29(A):36–52. https://doi.org/10.1016/j.cirpj.2020.02.002
4. Qi Q., Tao F. Digital Twin and Big Data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access. 2018;6:3585–3593. https://doi.org/10.1109/ACCESS.2018.2793265
5. Thompson W.R. Energy, Kondratieff Waves, Lead Economies, and Their Evolutionary Implications. Journal of Globalization Studies. 2012;3(2):167–194.
6. Н.Д. Кондратьев: кризисы и прогнозы в свете теории длинных волн. Взгляд из современности. Под. ред. Л.Е. Гринина, А.В. Коротаева, В.М. Бондаренко М.: Учитель; 2017. 384 с.
7. Reuter T. Transformations to sustainability: Why integrated social change requires a political process based on inclusive communication. Cadmus. 2021;4(5):184–190.
8. Choi S., Jain R., Zhang H. Digital Twin + AI: Control room of the future. National Renewable Energy Laboratory (NREL), 2023. Available at: https://docs.nrel.gov/docs/fy24osti/87050.pdf
9. Palensky P., Cvetkovic M., Gusain D., Joseph A. Digital twins and their use in future power systems. Digital Twin. 2022;1:4. https://doi.org/10.12688/digitaltwin.17435.2
10. Emily N., Bastian N.D. Synthetic environments for the cyber domain: a survey on advances, gaps, and opportunities. The Cyber Defense Review. 2023;8(2):91–104.
11. Motlagh N.H., Mohammadrezaei M., Hunt J., Zakeri B. Internet of Things (IoT) and the energy sector. Energies. 2020;13(2):494. https://doi.org/10.3390/en13020494
12. Grieves M. Digital Twins: Past, present, and future. In: Stark R., Damerau T. (eds.). Digital Twins – Concepts and applications. Springer; 2023. P. 97–121. https://doi.org/10.1007/978-3-031-21343-4
13. Yao J.-F., Yang Y., Wang X.-C., Zhang X.-P. Syste- matic review of digital twin technology and applications. Visual Computing for Industry, Biomedicine, and Art. 2023;6(1):10. https://doi.org/10.1186/s42492-023-00137-4
14. Singh M., Fuenmayor E., Hinchy E.P., Qiao Y., Murray N., Devine D. Digital Twin: Origin to future. Applied System Innovation. 2021;4(2):36. https://doi.org/10.3390/asi4020036
15. Gan P.Y., Li Z. Quantitative study on long term global solar photovoltaic market. Renewable and Sustainable Energy Reviews. 2015;46(С):88–99. https://doi.org/10.1016/j.rser.2015.02.041
16. Cui F. Research on future development and challenges of new energy. Advances in Economics, Management and Political Sciences. 2025;162(1):66–72. https://doi.org/10.54254/2754-1169/2025.20068
17. Attaran M., Celik B.G. Digital Twin: Benefits, use cases, challenges, and opportunities. Decision Analytics Journal. 2023;6(80):100165. https://doi.org/10.1016/j.dajour.2023.100165
18. Bradley P., Whittard D., Green L., Brooks I., Hanna R. Empirical research of green jobs: A review and reflection with practitioners. Sustainable Futures. 2025;9:100527. https://doi.org/10.1016/j.sftr.2025.100527
19. Schmidt C., Volz F., Stojanovi, L., Sutschet G. Increasing interoperability between Digital Twin standards and specifications: Transformation of DTDL to AAS. Sensors. 2023;23(18):7742. https://doi.org/10.3390/s23187742
20. Kopec J., Pekarcikova M., Lachvajderova L., Trebuňa M. Digital Twin, virtual reality and augmented reality and their use. In: Conference “Invention for Enterprise”. Conference paper. Žilina, October 2021. Available at: https://www.researchgate.net/publication/366192832_digital_twin_virtual_reality_and_augmented_reality_and_their_use#fullTextFileContent
21. Pigni F., Watson R.T., Piccoli G. Digital Twins: Representing the future. SSRN Electronic Journal. 2021. https://doi.org/10.2139/ssrn.3855535
评论
供引用:
格沃兹佳尼 S.E., 米亚斯科夫 A.V. 数字孪生是未来能源领域的关键要素:与康德拉季耶夫长波理论的联系. 工业经济. 2025;18(3):346-357. (In Russ.) https://doi.org/10.17073/2072-1633-2025-3-1463
For citation:
Gvozdyanyy S.E., Myaskov A.V. Digital twins as a key element of the energy of the future: the connection with Kondratiev’s theory of long waves. Russian Journal of Industrial Economics. 2025;18(3):346-357. (In Russ.) https://doi.org/10.17073/2072-1633-2025-3-1463