Analysis and forecasting of gross industrial value added on the example of the Nizhny Novgorod region
https://doi.org/10.17073/2072-1633-2025-4-1493
Abstract
Under the influence of global shocks and macroeconomic instability it is essential to develop more advanced approaches to forecasting the gross regional product (GRP) and its components both at the country and region levels. Forecasting of GRP involves selection and justification of the key factors determining its dynamics. In the study, the formation of gross value added (GVA) of the industry was analyzed on the example of a fairly developed Russian industrial region – the Nizhny Novgorod region. To this end, the authors built a two-level GVA econometric model of industry of the Nizhny Novgorod region, which showed that the value is statistically significantly affected by such factors as the average per capita monetary income of the population and the average annual official dollar exchange rate. It has been stated that the dynamics of the average per capita monetary income of the population, in its turn, depend on the average price of Urals crude oil, gratuitous receipts to the consolidated budget of the region and the average annual number of employed people. The choice of factors is determined by the statistical procedure that allows revealing the relationships using time series cointegration. On the basis of the created two-level model for the GVA of the industry of the region and the models for exogenous factors, the authors make forecasts for all the involved indicators for the period up to 2026. The results of the study can be useful for the regional authorities in creating scenarios of development of the industry and determining the effectiveness of the control factors, which will make it possible to make sound management decisions in industrial policy and strategic planning.
Keywords
About the Authors
M. Yu. MalkinaRussian Federation
Marina Yu. Malkina – Dr.Sci. (Econ.), Professor, Department of Economic Theory and Methodology, Head of the Center for Macro and Microeconomics, National Research Lobachevsky State University of Nizhny Novgorod.
27 Lenina Ave., Nizhny Novgorod 603140
O. V. Kapitanova
Russian Federation
Olga V. Kapitanova – PhD (Phys.-Math.), Associate Professor, Department of Mathematical Modeling of Economic Processes, National Research Lobachevsky State University of Nizhny Novgorod.
27 Lenina Ave., Nizhny Novgorod 603140
A. V. Semenov
Russian Federation
Alexsey V. Semenov – PhD (Phys.-Math.), Associate Professor, Head of the Department of Mathematical Modeling of Economic Processes, National Research Lobachevsky State University of Nizhny Novgorod.
27 Lenina Ave., Nizhny Novgorod 603140
References
1. Avdon’kina V.V. Analysis and trends in the development of the industrial sphere of the Nizhny Novgorod region. Upravlencheskii uchet = Management Accounting. 2021;(8-2):353–360. (In Russ.). https://doi.org/10.25806/uu8-22021353-360
2. Zubarevich N.V. Regions of Russia in the new economic realities. Journal of the New Economic Association. 2022;(3(55)):226–234. (In Russ.). https://doi.org/10.31737/2221-2264-2022-55-3-15
3. Zubarevich N.V. Regions of Russia at the end of 2023: have they managed to overcome the crisis recession? Voprosy teoreticheskoi ehkonomiki. 2024;(1):34–47. (In Russ.). https://doi.org/10.52342/2587-7666VTE_2024_1_34_47
4. Malkina M.Yu. Industry of Russian regions under new anti-Russian sanctions. Prostranstvennaya ehkonomika = Spatial Economics. 2024;20(3):39–66. (In Russ.). https://doi.org/10.14530/se.2024.3.039-066
5. Sergeeva N.M., Skripkina E.V. Assessment of changes in the structure of the Russian military-industrial complex in the context of the growing crisis. Azimut nauchnykh issledovanii: ekonomika i upravlenie = Azimuth of Scientific Research: Economics and Management. 2024;13(3):74–77. (In Russ.)
6. Vagina P.S. Econometric modeling the influence of macroeconomic indicators on the efficiency of the economy of regions of Russia. Finansovaya ehkonomika = Financial Economy. 2020;(12):330–333. (In Russ.)
7. Sorokozherdyev K.G., Efimov E.A. The Influence of the Regional Sectoral Structure on the Socioeconomic Development of a Region. Ekonomika regiona = Economy of regions. 2023;19(2):314–328. (In Russ.). https://doi.org/10.17059/ekon.reg.2023-2-2
8. Zaretskaya V.G., Chernikova E.A. Gross regional product growth: factor decomposition. Izvestiâ Ûgo-Zapadnogo gosudarstvennogo universiteta. Seriâ Èkonomika, sociologiâ, menedžment = Proceedings of the Southwestern State University. Series: Economics. Sociology. Management. 2020;10(5):89–103. (In Russ.)
9. Rudenko L.G. Methodology of forecasting the gross value added of the manufacturing industry in the region. Regional Economy and Management: an Electronic Scientific Journal. 2024;1(77). (In Russ.). Available at: https://eee-region.ru/article/7713/
10. Krupko A.E., Fetisov Yu.M., Rogozina R.E. Modeling of factors of sustainable development of industrial production in the CFD. FES: Finance. Economy. Strategy. 2018;15(7):56–66. (In Russ.)
11. Gubarev R., Volodin A., Dzyuba E., Tulenev Y., Fayzullin F., Yangirov A. Improving the effectiveness of Russia’s investment and industrial policy. Economics and the Mathematical Methods. 2020;56(1):54–66. (In Russ.). https://doi.org/10.31857/S042473880008479-5
12. Aliaskarova Zh.A. Capital investment and gross value added: indicators linkages and econometric forecasting based on the SARIMA model. Izvestiya Mezhdunarodnoi akademii agrarnogo obrazovaniya = Proceedings of the International Academy of Agrarian Education. 2020;(52):31–36. (In Russ.)
13. Seliverstova T.P., Kuzmin P.I., Seliverstov S.I., Shapovalova S.V. Analysis of GRP growth factors in the Altai Territory using econometric models. Management of Economic Systems: an Electronic Scientific Journal. 2017;(5(99)). Режим доступа: https://cyberleninka.ru/article/n/analiz-faktorov-rosta-vrp-altayskogo-kraya-s-pomoschyu-ekonometricheskih-modeley (In Russ.)
14. Baenkhaeva A.V. Forecasting the gross regional product. Economy and Business: Theory and Practice. 2016;(11):5–10. (In Russ.)
15. Kasaeva T.V., Okisheva T.N. Forecasting models of gross added value in the manufacturing industry of the Vitebsk region. Bulletin of the Vitebsk State Technological University. 2011;(21):157–167. (In Russ.)
16. Yang Y., Kong J., Yang L., Yang Z. Sequential big data-based macroeconomic forecast for industrial value added. Communications in Mathematics and Statistics. 2019;7:445–457. https://doi.org/10.1007/s40304-019-00177-4
17. Lehmann R., Wohlrabe K. Forecasting gross value-added at the regional level: are sectoral disaggregated predictions superior to direct ones? Review of Regional Research. 2014;34:61–90. https://doi.org/10.1007/s10037-013-0083-8
18. Serban A.C., Pelinescu E., Dospinescu A. Beta convergence analysis of gross value added in the high-technology manufacturing industries. Technological and Economic Development of Economy. 2021;28(2):1–23.
19. Cai J., Leung P. A note on linkage between gross value added and final use at the industry level. Economic Systems Research. 2020;32(3):428–437. https://doi.org/10.1080/09535314.2020.1718617
20. Arutyunyan G.E. The theoretical approaches to assessing effects of military expenditure on growth. Russian Journal of Management. 2018;6(3):1–5. (In Russ.). https://doi.org/10.29039/article_5c76b0e5c1db78.32516834
21. Ryabov I.Y. Development of tools for analyzing and visualizing structural relationships in dynamic socio-economic systems. MAK: Matematiki – Altaiskomu krayu. 2022;(4):191–193. (In Russ.)
22. Engle R.F., Granger K.U.D. Co-integration and error correction: presentation, evaluation and testing. Applied Econometrics. 2015;39(33):106–135. (In Russ.)
23. Alekhin B.I. human capital and regional economic growth in Russia. Prostranstvennaya Ekonomika = Spatial Economics. 2021;17(2):57–80. (In Russ.). https://doi.org/10.14530/se.2021.2.057-080
24. Arkhipov R.Yu., Katyshev P.K. Electric power generation and GDP in Russia: Cointegration analysis. Applied Econometrics. 2016;44:38–49. (In Russ.)
25. Капитанова О.В., Зиняков Ю.В. Об использовании производственных функций для моделирования экономики Российской Федерации. В: Сб. науч. стат. III Всерос. науч.-практ. сем. «Математическое и компьютерное моделирование и бизнес-анализ в условиях цифровизации экономики», 24 апреля 2023 г., Нижний Новгород. Нижний Новгород: ННГУ; 2023. С. 88–96.
26. Malkina M.Yu. Drivers of economic growth of the Nizhny Novgorod Region: Modeling GRP using data from twin regions. Economic and Social Changes: Facts, Trends, Forecast. 2025;18(2):76–89. https://doi.org/10.15838/esc.2025.2.98.4
27. Plotnikov V.A., Malyh E.B. An analysis of the influence of the exchange rate on the national industrial production. Upravlencheskoe konsul’tirovanie = Management consulting. 2012;(3):140–146. (In Russ.)
28. Badassen P., Kartaev F., Khazanov A. Econometric evaluation of the ruble exchange rate impact on the out-put. Den`gi i kredit = Money and credit. 2015;(7):41–49.
Supplementary files
Review
For citations:
Malkina M.Yu., Kapitanova O.V., Semenov A.V. Analysis and forecasting of gross industrial value added on the example of the Nizhny Novgorod region. Russian Journal of Industrial Economics. 2025;18(4):544-558. (In Russ.) https://doi.org/10.17073/2072-1633-2025-4-1493































