类自然技术在工业系统可持续发展中的作用
https://doi.org/10.17073/2072-1633-2025-4-1530
摘要
在制裁背景下,现代俄罗斯宏观经济体系侧重于技术发展、数字化、可持续发展以及生产 和经济系统的生态化。经济系统运行的关键问题是资源制约,它会导致瓶颈和排队现象的出现。 进而影响整个系统的效率和竞争力。类自然技术的开发及其在工业中的应用被视为实现可持续发 展目标的关键条件。本研究旨在界定类自然技术的理论基础,并探索其在实现工业可持续发展中 的应用潜力。本文分析了类自然技术发展概念的科学渊源,并对“类自然技术”、“自然启发式 算法”和“自然启发式系统”等类别进行了定义。文章总结了类自然技术在解决环境问题、实现 资源独立、提高经济效率和技术发展方面的原则。通过类比自然生态系统,探讨了将传统生产系 统向中观系统转型的可能性。研究证明,正是这种以闭环经济为基础的方法,能够超越单一“绿 色”技术的应用,实现协同效应。为了系统化分析,提出了类自然技术的分类,并确定了其在工 业领域的主要应用方向。文章得出以下结论:类自然技术的应用在可持续发展的三个领域产生了 可衡量的显著影响:1)经济领域——降低成本,创造新价值;2)生态领域——减少排放,优 化资源利用; 3)社会领域——创造安全的工作条件和有利于人类生命健康的良好环境。实施类 自然技术的经济效益是其规模化推广的关键驱动因素之一。在制定管理决策时必须考虑到,推广 类自然技术是一项战略投资,旨在确保中观系统的竞争力及其资源独立性。在国家最高领导层层 面,有必要制定和实施激励措施,支持在系统层面实施类自然技术原则的项目。
参考
1. Вернадский В.И. Научная мысль как планетное явление. Отв. ред. А.Л. Яншин. М.: Наука; 1991. 270 с.
2. Казначеев В.П. Учение В.И. Вернадского о ноосфере в связи с современными проблемами экологии человека. Ноосферные исследования. 2023;(4):6–16. https://doi.org/10.46724/NOOS.2023.4.06-16
3. Benyus J.M. Biomimicry: Innovation Inspired by Nature. New York: William Morrow; 1997. 288 p.
4. McDonough W., Braungart M. Cradle to Cradle: Remaking the Way We Make Things. New York: North Point Press; 2002. 193 p.
5. Chin M.H.W., Linke J., Coppens M.-O. Nature-inspired sustainable medical materials. Current Opinion in Biomedical Engineering. 2023;28:100499. https://doi.org/10.1016/j.cobme.2023.100499
6. Dao V.-D., Nguyen H.T.K. Nature-inspired design for high-efficiency solar-driven water evaporation. Journal of Power Sources. 2024;609:234676. https://doi.org/10.1016/j.jpowsour.2024.234676
7. Gaitan N.C., Ungurean I., Corotinschi G., Roman C. An intelligent energy management system solution for multiple renewable energy sources. Sustainability. 2023;15(3):2531. https://doi.org/10.3390/su15032531
8. Bertaglia T., Costa C.M., Lanceros-Méndez S., Crespilho F.N. Eco-friendly, sustainable, and safe energy storage: a nature-inspired materials paradigm shift. Materials Advances. 2024;5(19):7534–7547. https://doi.org/10.1039/d4ma00363b
9. Meshalkin V., Akhmetov A., Lenchenkova L., Nzioka A., Politov A., Strizhnev V., Telin A., Fakhreeva A. Application of renewable natural materials for gas and water shutoff processes in oil wells. Energies. 2022;15(23):9216. https://doi.org/10.3390/en15239216
10. Selvam D.C., Devarajan Y. Bio-inspired hybrid materials for sustainable energy: Advancing bioresource technology and efficiency. Materials Today Communications.2025;46:112647. https://doi.org/10.1016/j.mtcomm.2025.112647
11. Oguntona O. Developing a nature-inspired sustainability assessment tool: The role of materials efficiency. Materials Proceedings. 2025;22(1):3. https://doi.org/10.3390/materproc2025022003
12. Lebdioui A. Nature-inspired innovation policy: Biomimicry as a pathway to leverage biodiversity for economic development. Ecological Economics. 2022;202:107585. https://doi.org/10.1016/j.ecolecon.2022.107585
13. Prathumrat P., Likitaporn C., Rimdusit S., Nikzad M., Wongsalam T., Tanalue N., Okhawilai M. Deep Insights into the design of next-generation water-based stimuli-responsive shape memory polymers: From fundamentals to nature-inspired innovations. Applied Materials Today. 2025;44:102754. https://doi.org/10.1016/j.apmt.2025.102754
14. Huang Z., Hwang Y., Radermacher R. Review of nature-inspired heat exchanger technology. International Journal of Refrigeration. 2017;78:1–17. https://doi.org/10.1016/j.ijrefrig.2017.03.006
15. Xu Y., Zhang Q., Liang Y., Huang L. A review of solar interfacial distillation water purification technology inspired by nature. Journal of Water Process Engineering. 2023;55:104156. https://doi.org/10.1016/j.jwpe.2023.104156
16. Gertsen M.M., Perelomov L.V., Arlyapov V.A., Atroshchenko Y.M., Meshalkin V.P., Chistyakova T.B., Reverberi A.P. Degradation of oil and petroleum products in water by bioorganic compositions based on humic acids. Energies. 2023;16(14):5320. https://doi.org/10.3390/en16145320
17. Trubetskoi K.N., Galchenko Y.P. Naturelike mining technologies: Prospect of resolving global contradictions when developing mineral resources of the lithosphere. Herald of the Russian Academy of Sciences. 2017;87:378–384. https://doi.org/10.1134/S1019331617040050
18. Quintero A., Zarzavilla M., Tejedor-Flores N., Mora D., Chen Austin M. Sustainability assessment of the anthropogenic system in panama city: Application of biomimetic strategies towards regenerative cities. Biomimetics. 2021;6(4):64. https://doi.org/10.3390/biomimetics6040064
19. Musango J.K., Currie P., Robinson B. Urban metabolism for resource efficient cities: From theory to implementation. Paris: UN Environment; 2017.
20. Tan X., Jiao J., Jiang M., Chen M., Wang W., Sun Y. Digital policy, green innovation, and digital-intelligent transformation of companies. Sustainability. 2024;16(16):6760. https://doi.org/10.3390/su16166760
21. Luo S., Yimamu N., Li Y., Wu H., Irfan M., Hao Y. Digitalization and sustainable development: How could digital economy development improve green innovation in China? Business Strategy and the Environment. 2023;32(4):1847–1871. https://doi.org/10.1002/bse.3223
22. Zhu Y., Zhang H., Siddik A.B., Zheng Y., Sobhani F.A. Understanding corporate green competitive advantage through green technology adoption and green dynamic capabilities: Does green product innovation matter? Systems. 2023;11(9):461. https://doi.org/10.3390/systems11090461
23. Yang J.Y., Roh T. Open for green innovation: From the perspective of green process and green consumer innovation. Sustainability. 2019;11(12):3234. https://doi.org/10.3390/su11123234
24. Sun Y., Sun H. Green innovation strategy and ambidextrous green innovation: The mediating effects of green supply chain integration. Sustainability. 2021;13(9):4876. https://doi.org/10.3390/su13094876
25. Ozgul B. Does green transformational leadership develop green absorptive capacity? The role of internal and external environmental orientation. Systems. 2022;10(6):224. https://doi.org/10.3390/systems10060224
26. Shinkevich A.I., Barsegyan N.V., Galimulina F.F. Measuring and forecasting the development concept of the “Green” macrosystem using data analysis technologies. Sustainability. 2024;16(24):11152. https://doi.org/10.3390/su162411152
27. Momenikorbekandi A., Kalganova T. Intelligent scheduling methods for optimisation of job shop scheduling problems in the manufacturing sector: A systematic review. Electronics. 2025;14(8):1663. https://doi.org/10.3390/electronics14081663
28. Rao R.V., Davim J.P. Single, multi-, and many-objective optimization of manufacturing processes using two novel and efficient algorithms with integrated decision-making. Journal of Manufacturing and Materials Processing. 2025;9(8):249. https://doi.org/10.3390/jmmp9080249
29. Galimulina F.F., Barsegyan N.V. Application of mass service theory to economic systems optimization problems – A review. Mathematics. 2024;12:403. https://doi.org/10.3390/math12030403
30. Zhang L., Hu Y., Tang Q., Li J., Li Z. Data-driven dispatching rules mining and real-time decision-making methodology in intelligent manufacturing shop floor with uncertainty. Sensors. 2021;21(14):4836. https://doi.org/10.3390/s21144836
31. Bányai T. Optimization of material supply in smart manufacturing environment: A metaheuristic approach for matrix production. Machines. 2021;9(10):220. https://doi.org/10.3390/machines9100220
32. Massim Y., Yalaoui F., Chatelet E., Yalaoui A., Zeblah A. Efficient immune algorithm for optimal allocations in series-parallel continuous manufacturing systems. Journal of Intelligent Manufacturing. 2012;23:1603–1619. https://doi.org/10.1007/s10845-010-0463-7
33. Para J., Del Ser J., Nebro A.J. Energy-aware multi-objective job shop scheduling optimization with metaheuristics in manufacturing industries: A critical survey, results, and perspectives. Applied Sciences. 2022;12(3):1491. https://doi.org/10.3390/app12031491
34. Gao K., Huang Y., Sadollah A., Wang L. A review of energy-efficient scheduling in intelligent production systems. Complex & Intelligent Systems. 2020;6:237–249. https://doi.org/10.1007/s40747-019-00122-6
35. Islam J., Mamo Negash B., Vasant P.M., Ishtiaque Hossain N., Watada J. Quantum-based analytical techniques on the tackling of well placement optimization. Applied Sciences. 2020;10(19):7000. https://doi.org/10.3390/app10197000
36. Kumar A., Jaiswal A. A deep swarm-optimized model for leveraging industrial data analytics in cognitive manufacturing. IEEE Transactions on Industrial Informatics. 2021;17(4):2938–2946. https://doi.org/10.1109/TII.2020.3005532
37. Guneshwor L., Eldho T.I., Vinod Kumar A. Identification of groundwater contamination sources using meshfree rpcm simulation and particle swarm optimization. Water Resources Management. 2018;32:1517–1538. https://doi.org/10.1007/s11269-017-1885-1
38. Goulart D.A., Pereira R.D. Autonomous pH control by reinforcement learning for electroplating industry wastewater. Computers & Chemical Engineering. 2020;140:106909. https://doi.org/10.1016/j.compchemeng.2020.106909
39. Sakharov M., Koledina K., Gubaydullin I., Karpenko A. Studying the efficiency of parallelization in optimal control of multistage chemical reactions. Mathematics. 2022;10(19):3589. https://doi.org/10.3390/math10193589
40. Chertow M.R. Industrial symbiosis: Literature and taxonomy. Annual Review of Energy and the Environment. 2000;25(1):313–337. https://doi.org/10.1146/annurev.energy.25.1.313
41. Jacobsen N.B. Industrial symbiosis in Kalundborg, Denmark: A quantitative assessment of economic and environmental aspects. Journal of Industrial Ecology. 2006;10(1-2):239–255. https://doi.org/10.1162/108819806775545411
42. Gamage A., Dayaratne R. Learning from nature: towards a research-based biomimicry approach to ecologically sustainable design (ESD). Conference: Sustainability through biomimicry: Discovering a world of solutions inspired by nature: College of Design, Dammam University. 2012;17.
43. Benachio G.L.F., Freitas M.C.D., Tavares S.F. Circular economy in the construction industry: A systematic literature review. Journal of Cleaner Production. 2020;260:121046. https://doi.org/10.1016/j.jclepro.2020.121046
评论
供引用:
巴尔谢吉杨 N.V., 申克维奇 A.I., 加利穆利娜 F.F. 类自然技术在工业系统可持续发展中的作用. 工业经济. 2025;18(4):486-498. (In Russ.) https://doi.org/10.17073/2072-1633-2025-4-1530
For citation:
Barsegyan N.V., Shinkevich A.I., Galimulina F.F. The role of nature-like technologies in implementing sustainable development of industrial systems. Russian Journal of Industrial Economics. 2025;18(4):486-498. (In Russ.) https://doi.org/10.17073/2072-1633-2025-4-1530































