Theoretical and practical approaches for demand forecasting in the motorcar industry
https://doi.org/10.17073/2072-1633-2015-1-128-139
Abstract
The article deals with problems of collection and storage of information which will be subsequently
processed and interpreted when forecasting the demand in the motorcar industry. Socio-economic forecasting is an effective predictor of demand for manufactured products. In this case, the forecasting process is quite complex, since it depends on a large number of both predictable and unpredictable options. To implement and improve forecast accuracy it is necessary to identify the most important factors influencing the projected figure. The article defines the basic macroeconomic, political, legal, market, infrastructure and production factors influencing the change of the potential demand for the products of the motorcar industry. Factors presented in the paper inherit specific peculiarities, they differ from each other, thus it becomes necessary to identify both factors and their qualitative and quantitative description. On the basis of quantitative and qualitative data analysis the methodological approaches to the development of multipliers are
described which influence the most significant reasons for the development of the motorcar industry , including the mechanism for assessing the scale of the integral indicator characterizing the macroeconomic conditions of the process. As a practical example of the implementation of the proposed methods of forecasting the results of shortterm forecast for the commercial and passenger segment of the motorcar industry are presented.. For better demonstration of forecast the article provides graphics and radar chart. The article may be of interest both for a wide audience engaged in theoretical aspects of branch prediction and for practitioners working in the relevant field.
About the Authors
S. S. KabanovRussian Federation
Candidate of economic Sciences, Associate Professor, Nizhegorodskii branch,
603001 Nizhnii Novgorod, Rozhdestvenskaya St, 37
S. A. Borisov
Russian Federation
Candidate of economic Sciences, Associate Professor,
Minin St., 24, Nizhny Novgorod, 603950.
References
1. Butakova M.M. Ekonomicheskoe prognozirovanie: metody i priemy prakticheskikh raschetov: ucheb. pos. [Economic Forecasting: methods and techniques of practical calculations]. Moscow: Knorus, 2010. 168 p. (In Russ).
2. Kandaurova G.A., Borisevich V.I., Kandaurov N.N. Prognozirovanie i planirovanie ekonomiki: ucheb. [Forecasting and planning of the economy] Moscow: Interpress, 2005. 476 p. (In Russ).
3. Kuzyk B.N., Kushlin V.I., Yakovets Yu. V. Prognoziro vanie, strategicheskoe planirovanie i natsional’noe programmirovanie. [Forecasting, strategic planning and
4. national programming]. Moscow: Ekonomika, 2011. 604 p. (In Russ).
5. Jakovec Ju.V. Global’nye ekonomicheskie transformacii XXI veka [Global economic transformation of the XXI century] Moscow: Ekonomika, 2011. 382 p. (In Russ).
6. Pisareva O.M. Metody prognozirovaniya razvitiya sotsial’no-ekonomicheskikh sistem. [Methods for predicting the development of socio-economic systems]. Moscow: Vysshaya shkola, 2007. 592 p. (In Russ).
7. Sedakov I.A. Common methodological approaches to modeling and forecasting of socio-economic development of the region.Problemy prognozirovaniya. 2008. no. 4. Pp. 151–155. (In Russ).
8. Tikhomirov N.P., Saburov E.F., Sidorov M.A. Me tody sotsial’no-ekonomicheskogo prognozirovaniya. [Methods of social and economic forecasting]. Moscow: izd-vo MGOU, 2005. 668 p. (In Russ).
9. Uzbekova A.S., Yurlov F. F. Adaptivnoe prognozirovanie ekonomicheskogo sostoyaniya predpriyatiya na osnove poetapnogo monitoringa. [Adaptive forecasting economic condition of the company in a phased monitoring]. N. Novgorod: NGTU im. R. E. Alekseeva. 2013. 139 p. (In Russ).
10. Fartushina A.S. Analysis of the methodological principles and approaches to forecasting market conditions. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Ekonomika. 2010. no. 1. Pp. 63–69. (In Russ).
11. Etkin D.M. One of the possible approaches to sales forecasting massive car (for example, the US car market). Trudy NAMI. 2009. no. 241. Pp. 89–110. (In Russ).
12. Gerasimenko, V.V. Tsenovaya politika organizatsii: prakt. posobie [Pricing policy organization]. Moscow: Eksmo, 2007. 351 p. (In Russ).
13. Beshelev S.D., Gurvich F.G. Matematikostatisticheskie metody ekspertnykh otsenok. 2-e izd. pererab. i dop. [Mathematical and statistical methods of expert
14. estimates. 2nd ed. Revised. and additional]. Moscow: Statistika, 2004. 263 p. (In Russ).
15. Borisov S.A., Plekhanova A.F. The use of innovative mathematical methods in the social and economic forecasting. Trudy NGTU im. R.E. Alekseeva. 2012. no. 2 (95). P. 258–264. (In Russ).
16. Hingley P., Nikolas M. Forecasting Innovations. Heidelberg: Springer-Verlag, 2006. Pp. 267.
17. Abdih Y., Joutz F. Relating the knowledge production function to total factor productivity: an endogenous growth puzzle.. Available at: http://www.cass.city.
18. ac.uk/__data/assets/pdf_file/0007/65149/Joutz.pdf (accessed: 08.07.2014).
19. Fishbern P.S. Teoriya poleznosti dlya prinyatiya reshenii / per. s angl. pod red. N. N. Vorob’eva.[Utility theory for decision making]. Moscow: Nauka, 1978. 352 p. (In Russ).
20. RZhD nachali stroitel’stvo BAMa-2 [Russian Railways began building the BAM-2] Available at: http://ria.ru/economy/20140708/1015174349.html (accessed: 08.07.2014). (In Russ).
Review
For citations:
Kabanov S.S., Borisov S.A. Theoretical and practical approaches for demand forecasting in the motorcar industry. Russian Journal of Industrial Economics. 2015;(1):128-139. (In Russ.) https://doi.org/10.17073/2072-1633-2015-1-128-139