Preview

Russian Journal of Industrial Economics

Advanced search

Analytical justification of formulas for calculating the probability of failure-free operation for simple reliability models

https://doi.org/10.17073/2072-1633-2018-3-256-260

Abstract

In the majority of works connected with research of reliability of production and other technical systems the Kolmogorov axiomatics is applied. The corresponding analytical apparatus allows to solve problems of maximization of probability of performance of production tasks (for example, daily schedule of steel smelting or monthly production plan). Evaluation of reliability of both production and information systems is a mandatory procedure in their design and is based on the construction of a special structural scheme, called the system model for calculating its reliability. It should be noted that Kolmogorov’s axioms are formulated for a system consisting of two elements. The corresponding graphical explanation of axiom equity is based on an imaginary experiment on a random drop of a certain point on a unit square, inside of which there are two intersecting

circles whose planes are proportional to the probability of reliable operation of the corresponding elements. But there is no mention that the centers of circles should be at a certain distance from each other. In this paper, for the known Kolmogorov axioms underlying the classical probability theory, their analytical conclusion is given.

About the Author

A. P. Smirnov
National University of Science and Technology «MISiS»
Russian Federation

Cand . Sci . (Eng .), Associated Professor

4 Leninsky Prospekt, Moscow 119049



References

1. Informatika [Informatics]. St. Petersburg: Peter, 2010. 768 p. (In Russ.)

2. Nikoza A.V. Komp’yuternye tekhnologii v oblasti avtomatizatsii i upravleniya [Computer technologies in the field of automation and control]. St. Petersburg: SPb GETU (LETI), 2007. 240 p. (In Russ.)

3. Norenkov I.P. Osnovy avtomatizirovannogo proektirovaniya [Fundamentals of computer-aided design]. Moscow: MGTU im. H.Uh. Baumana, 2002. 430 p. (In Russ.)

4. Venttsel’ E.S. Teoriya veroyatnostei [Probability Theory]. Moscow: Vysshaya shkola, 1999. 576 p. (In Russ.)

5. Gnedenko B.V. Kurs teorii veroyatnostei [Course of probability theory]. Moscow: Izdatel’stvo LKI, 2007. 447 p. (In Russ.)

6. Kolmogorov A.N. Teoriya veroyatnostei i matematicheskaya statistika [Probability theory and mathematical statistics]. Moscow: Nauka, 2011. 81 p. (In Russ.)

7. Shiryaev A.N. Matematicheskaya teoriya veroyatnostei. Ocherk stanovleniya. V kn.: Kolmogorov A.N. Osnovnye ponyatiya teorii veroyatnostei [The mathematical theory of probability. Essay on the history of the formation. In book Kolmogorov A.N. Basic concepts of probability theory]. Moscow: Fazis, 1998. 144 p. (In Russ.)

8. Verevkin A.P. Lektsii po kursu diagnostika i nadezhnost’ avtomatizirovannykh sistem upravleniya [Lectures on diagnosis and reliability of automated control systems]. Ufa: UGNTU, 2004. 70 p. (In Russ.)

9. Osnovina O.N. Diagnostika i nadezhnost’ avtomatizirovannykh sistem [Diagnostics and reliability of automated systems]. Stary Oskol: STI MISIS, 2006. 132 p. (In Russ.)

10. Maslov E.A. Tatarnikova A.A. Diagnostika i nadezhnost’ avtomatizirovannykh sistem [Diagnostics and reliability of automated systems]. Tomsk, 2009. 82 p. (In Russ.)

11. Skhirtladze A.G., Ukolov M.S., Skvortsov A.V. Nadezhnost’ i diagnostika tekhnologicheskikh sistem [Reliability and diagnostics of technological systems]. Moscow: Novoe znanie, 2008. 518 p. (In Russ.)

12. Alekseev A.E. Metody rascheta pokazatelei nadezhnosti tekhnicheskikh sistem: Chast’ 1 [Methods of calculation of reliability indices of technical systems: Part 1]. Arkhangelsk: Izd-vo FGUP «PO» Sevmash», 2003. 77 p. (In Russ.)

13. Venttsel’ E.S. Teoriya sluchainykh protsessov i ee inzhenernye prilozheniya [Theory of random processes and its engineering applications]. Moscow: Vysshaya shkola, 2000. 383 p. (In Russ.)

14. Aleksandrovskaya L.N., Afanasev A.P., Lisov A.A. Sovremennye metody obespecheniya bezotkaznosti slozhnykh tekhnicheskikh sistem [Modern methods of ensuring reliability of complex technical systems]. Moscow: Logos, 2003. 208 p. (In Russ.)

15. Ostreikovskii V.A. Teoriya nadezhnosti [Theory of reliability]. Moscow: Vysshaya shkola, 2003. 463 p. (In Russ.)

16. Bushuev A.A. The Architecture of the software system for determining the reliability of an information system. Vestnik permskogo universiteta = Bulletin of Perm University. 2010. No. 2(39). Pp. 21–29. (In Russ.)

17. Vasilenko N.V. Model evaluation of the reliability of the software. Vestnik Novgorodskogo gosudarstvennogo universiteta = Bulletin of Novgorod State University. 2004. No. 28. Pp. 23–28. (In Russ.)

18. Vashhenko G.V., Dobronecz B.S. Nadezhnost’ informatsionnykh sistem: Laboratornyi praktikum [Reliability of information systems]. Krasnoyarsk: SFU IKIT, 2008. 104 p. (In Russ.)

19. Vikharev S.M., Barinov A.A. Nadezhnost’ avtomatizirovannykh sistem [Reliability of automated systems]. Kostroma: Izd-vo KGTU, 2007. 80 p. (In Russ.)

20. Dodonov A.G., Lande D.V. Zhivuchest’ informatsionnykh sistem [Survivability of information systems]. Kiev: Naukova dumka, 2011. 256 p. (In Russ.)

21. Ermakov A.A. Osnovy nadezhnosti informatsionnykh sistem [Fundamentals of information systems reliability]. Irkutsk: IrGUPS, 2006. 151 p.


Review

For citations:


Smirnov A.P. Analytical justification of formulas for calculating the probability of failure-free operation for simple reliability models. Russian Journal of Industrial Economics. 2018;11(3):256-260. (In Russ.) https://doi.org/10.17073/2072-1633-2018-3-256-260

Views: 717


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-1633 (Print)
ISSN 2413-662X (Online)