Прогнозирование реализованной волатильности котируемых российских акций с помощью инструмента Google Trends и вмененной волатильности
https://doi.org/10.17073/2072-1633-2019-1-79-88
摘要
关于作者
Т. Баженов俄罗斯联邦
Д. Фантаццини
俄罗斯联邦
参考
1. Bauwens L., Hafner C.M., Laurent S. Handbook of volatility models and their applications. Wiley, 2012. 548 p.
2. Campos I., Cortazar G., Reyes T. Modeling and predicting oil VIX: Internet search volume versus traditional variables. Energy Economics. 2017. No. 66. Pp. 194–204. DOI: 10.1016/j.eneco.2017.06.009
3. Donaldson R.G., Kamstra M.J. Volatility forecasts, trading volume, and the arch versus optionimplied volatility trade-off. Journal of Financial Research. 2005. Vol. 28. No. 4. Pp. 519–538.
4. Andrei D., Hasler M. Investor attention and stock market volatility. The Review of Financial Studies. 2014. Vol. 28. No. 1. Pp. 33–72.
5. Vlastakis N. Markellos R.N. Information demand and stock market volatility. Journal of Banking and Finance. 2012. Vol. 36. No. 6. Pp. 1808–1821.
6. Mayhew S. Implied volatility. Financial Analysts Journal. 1995. Vol. 51. No. 4. Pp. 8–20.
7. Corsi F. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics. 2009. Vol. 7. No. 2. Pp. 174–196 .
8. Andersen T.G., Bollerslev T., Diebold F.X., Labys P. Modeling and forecasting realized volatility. Econometrica. 2003. Vol. 71. No. 2. Pp. 579–625.
9. Goddard J., Kita A., Wang Q. Investor attention and FX market volatility. Journal of International Financial Markets, Institutions and Money. 2015. No. 38. Pp. 79–96.
10. Basistha A., Kurov A., Wolfe M. Volatility Forecasting: The Role of Internet Search Activity and Implied Volatility. West Virginia University working paper. Avalable at: https://papers.ssrn.com/sol3/papers. cfm?abstract_id=2812387 (accessed: 05.02.2019).
11. Barndorff-Nielsen O.E., Shephard N. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2002. Vol. 64. No. 2. Pp. 253–280.
12. Liu L.Y., Patton A.J., Sheppard K. Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. Journal of Econometrics. 2015. Vol. 187. No. 1. Pp. 293–311.
13. Hull J.C. Options, futures and other derivatives. Pearson, 2018. 894 p.
14. Fengler M.R. Semiparametric modeling of implied volatility. Berlin: Springer, 2005. 231 p.
15. Hyndman R.J., Khandakar Y. Automatic Time Series Forecasting: the forecast Package for R. Journal of Statistical Software. 2008. Vol. 27. No. 3. DOI: 10.18637/ jss.v027.i03
16. Hansen P.R., Lunde A. A forecast comparison of volatility models: does anything beat a GARCH (1,1)? Journal of Applied Econometrics. 2005. Vol. 20. No. 7. Pp. 873–889.
17. Hansen P.R., Lunde A., Nason J.M. The model confidence set. Econometrica. 2011. Vol. 79. No. 2. Pp. 453–497.
18. Gonzаlez-Rivera G., Lee T.H., Mishra S. Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood. International Journal of Forecasting. 2004. Vol. 20. No. 4. Pp. 629–645.
19. Louzis D.P., Xanthopoulos-Sisinis S., Refenes A.P. Realized volatility models and alternative Valueat-Risk prediction strategies. Economic Modelling. 2014. No. 40. Pp. 101–116.
20. Kupiec P.H. Techniques for Verifying the Accuracy of Risk Measurement Models. The Journal of Derivatives. 1995. Vol. 3. No. 2. Pp. 73–84.
21. Christoffersen P.F. Evaluating interval forecasts. International economic review. 1998. No. 39. Pp. 841–862.
评论
供引用:
Bazhenov T., Fantazzini D. Forecasting Realized Volatility of Russian stocks using Google Trends and Implied Volatility. Russian Journal of Industrial Economics. 2019;12(1):79-88. https://doi.org/10.17073/2072-1633-2019-1-79-88